
Argante2
Design Notes

James Kehl
ecks@optusnet.com.au

May 26, 2002

Chapter 1

Kernel Design

1.1 ”Ring 0” - core essentials

1.1.1 Memory Access

typedef struct {
union {

unsigned long u;
signed long s;
a2float f;

} val;
} anyval;

a2float is a floating-point type with sizeof(a2float) == sizeof(long) - float on
32bit systems, double on 64bit systems.
Within Argante, all memory is of this type, and accesses are always aligned to
anyval block boundaries; this makes it easier to catch boundary violations, but
makes string manipulation difficult and leads to 16 GB of addressable memory
on 32bit systems (which have an 4 GB address space).
The central part of Argante is securing memory access - preventing code modifi-
cation, call stack overwriting, heap corruption attacks, and so on (ad nauseum,
sadly).
Currently the memory space is divided into 16384 blocks of 1 MB each. This
has the sole advantage of simplicity. It’s likely to change, as 1 MB is not a
Goldilocks number - it’s either way too small or way too large, but any changes
will require changing the image file format.

1

CHAPTER 1. KERNEL DESIGN 2

#define A2_MEM_READ 1
#define A2_MEM_WRITE 2
#define A2_MEM_MAPPED 4

struct memblk {
unsigned int mode; /* Access permissions */
anyval* memory; /* Real pointer */
unsigned int size; /* Size */
int destroy_scnum; /* Syscallnum to do a basic FREE */
unsigned alib_id; /* so we can get rid of lib’s mem */

};

Memory pages have the type shown above, though they should not be accessed
directly. MAPPED memory is accessible like normal memory, but cannot be
resized or have its permissions changed. Freeing it will call the syscall given in
’destroy scnum’ if it is nonzero.
size is in units of anyval.
alib id is provided to allow the dynamic linker to free pages that were loaded
from an image file which was subsequently removed. Pages allocated at runtime
will not be recognized.

unsigned mem_alloc(struct vcpu *curr_cpu, unsigned size,
unsigned flags);

unsigned mem_realloc(struct vcpu *curr_cpu, unsigned addr,
unsigned newsize);

void mem_changeperm(struct vcpu *curr_cpu, unsigned addr,
unsigned newflags);

void mem_dealloc(struct vcpu *curr_cpu, unsigned addr);

The above functions will allocate, resize, free or change the permissions of a
block of memory, or throw an exception if they fail. When they return an
unsigned value, it is an address from Argante-space, i.e. usable in mem ro or
mem rw...

const anyval *mem_ro(struct vcpu *curr_cpu, unsigned addr);
anyval *mem_rw(struct vcpu *curr_cpu, unsigned addr);

The above functions permit access to a single anyval for readonly or read-write
usage. This is faster than paired get mem value/set mem value calls, but kernel
code must not override the ’const’ and write to memory that was checked out
as readonly. Use rw, this checks for write permission.

#define dwords_of_bytes(a) \
((a / sizeof(anyval)) + ((a % sizeof(anyval)) ? 1 : 0))

const anyval *mem_ro_block(struct vcpu *curr_cpu, unsigned addr,
unsigned dwords);

anyval *mem_rw_block(struct vcpu *curr_cpu, unsigned addr,
unsigned dwords);

The above functions the permissions and validity of a large block of memory at
once. It is possible to cast the return value to a char * or const char * if needed.

CHAPTER 1. KERNEL DESIGN 3

dwords of bytes gives the number of anyval units required for ’a’ bytes, and is
useful for calculating the ’dwords’ arguments of the block functions.

int kerntoa_strcpy(struct vcpu *curr_cpu, unsigned addrto,
int size, const char *from);

int kerntoa_memcpy(struct vcpu *curr_cpu, unsigned addrto,
const char *from, int size);

int atokern_memcpy(struct vcpu *curr_cpu, char *to,
unsigned addrfrom, int size);

kerntoa strcpy copies a null-terminated string into Argante-space. The rest are
similar and should be self-explanatory.

1.1.2 Opcode Design

Argante has a fixed bytecode size. Without this, it is impossible to really know
what the code does. On other architectures, one perfectly ordinary-looking
instruction can become another if you jump into the middle of it, and that also
alters every instruction executed after that.

struct bcode_op {
unsigned char bcode;
unsigned char type;
short reserved; /* 32-align arguments for speed */
anyval a1;
anyval a2;

};

Consider an instruction like ADD. Logically, it should work for signed, unsigned
and floating-point types, and each combination needs a different code to imple-
ment.
Also, you should be able to use a constant, a register or the contents of a mem-
ory address, but that doesn’t change the actual instruction, it only changes the
location of the arguments in real memory, and you still need to know the type
of the argument.

#define TYPE_UNSIGNED 000
#define TYPE_SIGNED 001
#define TYPE_FLOAT 002

#define TYPE_IMMEDIATE 000
#define TYPE_REGISTER 004
#define TYPE_POINTER 010

#define TYPE_A1(a) ((a) << 0)
#define TYPE_A2(a) ((a) << 4)
#define TYPE_VALMASK (TYPE_UNSIGNED | TYPE_SIGNED | TYPE_FLOAT)

The first 2 bits of a bcode op’s ’type’ field are used for the type of argument 1,
the next 2 are flags designating immediate values, registers, pointers, or pointers
within registers. The next 4 are like the last 4, only for argument 2.
The type bits are used to find what instruction to call. The flags specify how

CHAPTER 1. KERNEL DESIGN 4

to get to the arguments - in the case of immediates, it’s just the address of the
anyval within the bcode op structure.
To stop people overwriting immediates, the instructions which change an argu-
ment need to be known about. When an image file is loaded,
validate bcode page from imageman.c is run. This checks that each referenced
instruction actually exists, that it doesn’t try and overwrite immeduates, that
it doesn’t use register 33, and finally precalculates the offsets within the JIT
table that each instruction will require (hey, I could remove the addition too!
FIXME)
The precalculation’s for speed, not security, but it does prevent anything that
changes an opcode from having any effect.
There’s a script that does all the hard work of generating the JIT table and
tracking which arguments of which instructions are readonly and read-write. It
gets its information from lines like:

/*! MOV 2 u RW u RO = cmd_mov_uu */

The above lines merely says that all MOV instructions have 2 arguments, the
first of which is written to and the second of which is readonly; and that
cmd mov uu is the name of the function which handles 2 unsigned arguments.
It really should have an opcode number in there, too. **FIXME**
cmd mov uu, written fully, is just:

static void cmd_mov_uu (struct vcpu *curr_cpu, anyval *a1,
anyval *a2) {
a1->val.u=a2->val.u;

}

Syscall2 - the rationale

As instructions are all of equal size, a one argument operation takes the same
space as a two argument operation - the one argument op is wasting 4 bytes.
In the case of syscalls, which can require any number of arguments, and take
them in r0 - r30, the problem gets worse - it’s 4 bytes wasted in the 1-argument
syscall instruction itself, and another 12 on a MOV instruction to pass another
argument to the syscall.
Equally, when debugging asm using IO PUTINT, you have to back up r0, move
the number to print into r0, perform the syscall, and restore r0. And hope you
didn’t clobber something when backing up r0 in the first place. Annoying, ugly,
and a potential cause of errors.
So, the new SYSCALL2 instruction takes two arguments, and passes its second
argument to the syscall function.
This is nice when writing lots of asm, but high level languages will find it easier
to ignore, and it’s not a very significant optimization when it comes to large,
multiple-argument syscalls. It’s also argued that it makes code analysis harder,
though the assembler warning when a non-syscall2 function is syscall2’d doesn’t
leave much confusion for me.
Perhaps syscall2 will be ”voted off the island”. Stay tuned.

CHAPTER 1. KERNEL DESIGN 5

Future Changes

The following opcodes were badly thought out and should change in some future
version. This will probably happen at the same time as adding a ’address’ field
to data in the image format (and numerous other fixes).

• alloc (takes u:size, u:perms, writes address to size) is badly thought out.
Who wants freshly-created read only memory? It should be more like
realloc (addr, size).

• realloc (takes u:addr, s:perms) should be renamed. This is the change-
permissions opcode and will never change its arguments, unlike realloc
(u:addr, u:size).

• setstack will also be improved. There is currently no way to set the pointer,
and resizing could be made cleaner. More thought required on this.

1.1.3 Exceptions

So many programmers are too lazy to check return values. And in most cases,
they don’t really care, because if one call fails the rest of the function can’t keep
going.
Hence the rise of exceptions. But as it’s hard enough checking return values,
running CHECK FAILURE FN when it’s required is damn near impossible. So
throw except is implemented with longjmp, and you have to be able to deal
with not having your function finish properly. Don’t acquire a lock or malloc()
a block you might not be able to release. alloca() is better.
Subexception handlers may be possible if this causes real problems.
Also, exceptions can only be thrown from within a running VCPU. This means
functions which are used outside this context - say, image load, or the vcpu start
or vcpu stop functions of a module - can’t throw exceptions.
(Note: we could allow exceptions in those functions. We’d just need a handler!)

1.1.4 Multithreading

When you are running VCPUs and interpreting keyboard input all from one
thread, it becomes painfully difficult to avoid blocking calls. Under Unix, some
functions are not available in nonblocking varieties (unless you want to rewrite
them, that is), like readline() or gethostbyname().
So, you can’t do it all from one thread.
One burden this places on you is to make sure you don’t cross threading lines.
Writing to static variables from VCPU code is out, as is poking at other images.
Poking at running VCPUs from manager (main-thread) code is also out. For
most big modifications (module loads/unloads) the VCPUs have to be spun
down.
The other burden is that to spin down a VCPU means anything more specific
about where a process is apart from curr cpu->IP is lost. There should either
be only one cancellation point per syscall (so the operation is atomic: done or
not done) or a register should be modified to track the process. Otherwise we
will ’stutter’ - very untraceably.

CHAPTER 1. KERNEL DESIGN 6

1.2 ”Ring 1” - syscalls, modules, and userspace
API

1.2.1 Modules

To keep the non-optional (and therefore most security-critical, for there is no
way to change the statically linked code barring a recompile) parts of Argante as
small (and understandable/reviewable) as possible, the system interactions are
partitioned up into modules. On most systems, these are dynamically loadable;
on the rest, they can still be changed with ./configure options.
From the stats, just as many people download the Windows, non-dl binaries as
the source, so static linking is needed as a fallback...
Four functions are needed in every module:

• int module init(unsigned lid) is called when the module is loaded.
Executed in manager context, so is guaranteed to be the only running
part of the module: so setting globals is OK.
lid is ’library id’, a unique identifier for your library which acts as a key
into the reserved structure and FD tables. Store this in a static global if
you need it later.
Return 0 for success and 1 for failure - if 1, module is unloaded and syscalls
stay unavailable.

• void module shutdown(void) is called when the module is unloaded.
Again, this is the only part of module running when this is called.

• void module vcpu start(struct vcpu *vcpu) is called when a new
VCPU starts. Other VCPUs may be using this module at this stage, and
exceptions are not allowed. (No code has been executed and so no handlers
can be set.)

• void module vcpu stop(struct vcpu *vcpu) is called when a VCPU
stops. Again, no exceptions allowed - this is already a dead CPU, and
that could revive it. Bad.

These hooks have proved sufficient, so far. Anything requiring more details
should probably be written into the core kernel.

1.2.2 Reserved Structures

Due to multithreading requirements, you cannot use static/global variables to
keep data about a particular VCPU. So, to store per-VCPU data, we have
the ’reserved structure’ array, which provides one void pointer per VCPU per
module. You can store whatever you like in it; a malloc()d structure being most
appropriate here.
The library ID passed to module init is needed to use these functions. Most of
the time you’ll only use set reserved in vcpu start. Be sure to free in vcpu stop!

void *module_get_reserved(struct vcpu *cpu, int lid);
int module_set_reserved(struct vcpu *cpu, int lid,

void *newdata);

CHAPTER 1. KERNEL DESIGN 7

set reserved returns 1 if it fails, so you can deallocate the data and assume
crash position. One possible cause of failure is a corrupt LID. Another is that
the system is out of memory.
get reserved may return NULL if set reserved hasn’t been called or it failed. If
it returns NULL, your best bet is to throw an exception (I recommend OOM).
The alternative to aborting is to dereference a NULL pointer and bring the
system down, so always check the return value!

1.2.3 Syscalls

#define SYSCALL_ARGS struct vcpu *curr_cpu, const anyval *arg
typedef void syscallfunc (SYSCALL_ARGS);

extern int register_syscall(unsigned id, syscallfunc *f);
extern int unregister_syscall(unsigned id);

register syscall and unregister syscall should be called during module init and
module shutdown (and ONLY then). These create and destroy the association
between a numeric syscall ID and the function it should be dispatched to. This
is stored in a hash table.
The function takes the VCPU pointer (of course) and arg - which is a readonly
argument - either r0 if the function’s been syscalled, or the second argument of
a syscall2.

1.2.4 Autogenerator

As with the JIT table, syscall functions are so - well, homogenous - that it’s
worth automating the syscall registration/deregistration and maintainance of
the compiler’s ID→syscall tables.
To do this you’ll need to be writing in C (I don’t know ADA, nor do I know
anyone else who’ll admit to knowing it :P). Using comment-bang lines (like for
the JIT) a perl script will do the rest, complete with #ifdefs so that static
linking works.

static inline int module_internal_init(int lid):
static inline void module_internal_vcpu_start(struct vcpu *cpu):
static inline void module_internal_vcpu_stop(struct vcpu *cpu):
static inline void module_internal_shutdown(void);

These should be static at the very least, if not static inline. They are internal
and should not be available externally, and most especially not to other modules
which might be linked with yours.
To include the autogenerated code which the kernel will be interfacing with,
write

#include "file_name.h"

where file name is the name of your module. Any existing header of that name
will be overwritten. (I suppose the file name could have been file name.hgen
. . .)

CHAPTER 1. KERNEL DESIGN 8

1. /*! allowed x - y */

2. /*! NEW CALL1 = new call1 */

3. /*! NEW CALL1 99900 = new call1 */

4. /*! NEW CALL1 SYS2 = new call1 */

5. /*! NEW CALL1 99900 SYS2 = new call1 */

The first line tells the autogenerator that this module has been assigned a range
of syscall numbers. The range 99900 - 99999 is defined as a testing range: feel
free to use this before you’ve been assigned a range, but if you release code that
uses it, Sendmail (”the daemon from hell”) will come round and have a little
chat with you.
The second line tells the autogenerator that the syscall named NEW CALL1 is
implemented in new call1, and that the autogenerator should pick a number for
it. This number should be written into the code ASAP. Think what happens if
FS RENAME’s number became that of FS DELETE’s.
The third line is the same as the second, only with the number specified. This
is good.
The next two lines are the same as the previous two, only they say that new call1
uses its arg parameter and so is a SYSCALL2.

1.2.5 Heirarchical Access Control

I hope everyone understands ACLs (access control lists) and inherited permis-
sions. (If not, you’d better ask the guy who’s r00ting your box right now.)
To control access to resources, Argante uses a method called Heirarhical Access
Control. This defines what operations may be performed on what resources (be
they files, sockets, or system statistics). These resources make up a filesystem-
like tree. The operations, too, are defined to form a tree: so we have /open/,
/open/read/, /open/write/, and /open/write/overwrite.
For files, the resource name is NOT the filename. There needs to be a ’names-
pace’ prefix: /fs/etc/hosts is the file /etc/hosts, for example. /tcp4/192.168.0.1
is an IPv4 host, very distinct from /fs/192.168.0.1, which is a (yawn) file.
So that every permission does not have to be specified for every file, inheritance
is used. If at a particular level, a permission is unspecified, it is inherited from
a more general level. (The operations tree is searched before the resource tree.)

Argante2’s HAC is a little different from Argante1’s. The HAC is actually stored
in a heirarchical structure (actually doubly nested hashed linklists, though some-
day it will change to something less memory hungry) rather than being imple-
mented as string comparisons.
This means you can specify HAC rules in any order whatsoever, and you can’t
specify wildcards: the generalization of rules has to be done during the mod-
ule design phase. Entries like /file/create and /file/delete should be avoided in
favour of /create/file and /create/directory - assuming you will grant permis-
sions for directory/file creation more ofen than file creation/deletion. . .
Remember - every ’directory’ is a new layer, consuming memory, and taking

CHAPTER 1. KERNEL DESIGN 9

time to traverse. Don’t be unnecessarily specific: do you really need all the de-
tails in /fs/fops/local/create/file/regular? /fs/ should be in the resource path,
to start with.
Argante2’s HAC DOES NOT check for wildcards and directory traversals. This
is not its job. The filenames ’*’ and ’..lck’ are valid filenames, and in namespaces
other than the filesystem ’..’ itself might be safe and ’#!’ dangerous. To cut out
directory traversals, the function fold() is provided. (Don’t stick the namespace
prefix on before this, or someone can jump namespaces.)
VALIDATE(dir, atype) is the usual way to check HAC permissions; this macro
requires curr cpu to be in a variable called ’curr cpu’, of all things. If your
syscalls stick to SYSCALL ARGS then you’re set.
If VALIDATE fails, it throws an exception. So don’t malloc() or open a file or
do anything that might not get cleaned up before you call it. alloca() is pre-
ferred over malloc() for just this reason. Beware, though, of alloca()’ing large
chunks of memory; it fails disasterously (Chernobyl-style).
If you can’t use VALIDATE, validate access(curr cpu, dir, atype) is the
underlying call. It returns nonzero on access failure.

1.2.6 Virtual File Descriptors

This is designed to be used for, like the name suggests, virtual file handles.
The VFD facilities have significant advantages over reserved structures for this
purpose, and have their own limitations which aren’t significant for this use.
One very significant motivation for using VFDs is that you don’t need to mess
with lots of resizing of reserved structures. The limitation is that each VCPU
has an upper limit on virtual file descriptors, which are shared between all
modules. (Of course, this is an intentional, adjustable limit.)

int vfd_alloc_new(struct vcpu *curr_cpu, int lid);

This returns a unique number which identifies your new VFD. Your OPEN call
is pretty useless if it doesn’t return this to the user.

void *vfd_get_data(struct vcpu *curr_cpu, int lid, int handle);
void vfd_set_data(struct vcpu *curr_cpu, int lid, int handle,

void *newd);
void vfd_dealloc(struct vcpu *curr_cpu, int lid, int handle);

These all throw a ERR BAD FD exception if passed a handle that wasn’t cre-
ated by your library (according to lid).

int vfd_find_mine(struct vcpu *curr_cpu, int lid);

vfd find mine is worth noting; it returns a handle if your module owns a VFD.
It’s most useful for destroying all your VFD’s in a vcpu stop routine - mind,
though, that you actually vfd dealloc or vfd find mine will keep returning the
same number...
Despite the name, these aren’t limited to IO. You could write a MySQL module
and use VFDs for database connections, or maybe even queries. You might
write a hashtable module and use VFDs for particular hashtables. Anything
that a VCPU might want multiples of is a candidate.

CHAPTER 1. KERNEL DESIGN 10

There is also a common layer for VFDs that DO stick to the I/O paradigm,
that allows CFD WRITE to write to files or consoles or sockets or syslog
or. . . depending on what module created the VFD, and also allows modules to
send/read kernel-space data via VFDs - so PUT HEX does not get implemented
20 times...

1.2.7 Common Operations layer

typedef void cfdop_close_fd (struct vcpu *curr_cpu, void *vfd);

/* for agents to create VFDs. */
typedef int cfdop_create_fd (struct vcpu *curr_cpu,

const char *desc, int in, int out);

/* returns "Block size" - maximum size to read/write at once. */
typedef int cfdop_start (struct vcpu *curr_cpu, void *vfd);

/* returns bytes read/written */
typedef int cfdop_write_block (struct vcpu *curr_cpu, void *vfd,

const char *buf, int size);
typedef int cfdop_read_block (struct vcpu *curr_cpu, void *vfd,

char *buf, int size);

/* CFD operations table version 1. */
struct cfdop_1 {

cfdop_start *read_start;
cfdop_start *write_start;
cfdop_read_block *read_block;
cfdop_write_block *write_block;
cfdop_close_fd *fd_close;
/* A unique endian-independant code (ie a string) for

accepting agent VFD’s. Only used for fd_create. */
int fd_desc;
cfdop_create_fd *fd_create;

};

To implement CFD, you put some function addresses into this table (If your
VFDs are always RO, then you might leave some fields NULL. Very few modules
implement agent-FDs, and most leave fd create NULL.
The way it works is: say CFD READ is called. It looks up what module that
VFD came from, and finds the table that’s associated with that module. From
that table, read start is called with the VFD data. It might, say, check the
HAC. Then it returns the block size writes should occur in (mostly for historical
reasons). The block size MUST be a multiple of sizeof(anyval). Then read block
is called repeatedly until all the data is read.
The agent-fd calls are to allow management agents to create VFDs for consoles,
or GUI connections, through a module which can speak the protocol (in this
case, VT100 or X). The fd create call will soon change to accept flexsocks instead
of file descriptors for portability.

CHAPTER 1. KERNEL DESIGN 11

The following calls allow searching and registering tables. lid set should be
called during module init.

/* get/set a table by lid */
extern void cfdop1_lid_set(unsigned lid,

const struct cfdop_1 *a);
extern const struct cfdop_1 *cfdop1_lid_get(unsigned lid);
/* get a table by a fd_desc - for agent-fds */
extern const struct cfdop_1 *cfdop1_fddesc_get(int fddesc);
/* Get the table for a vfd */
extern const struct cfdop_1 *cfdop1_vfd_get(struct vcpu

*curr_cpu, unsigned handle);

1.2.8 ”Alib”: dynamic linking

This should be avoided in favour of IPC. However, there is no IPC functionality
yet.

1.3 ”Ring 2” - management

1.3.1 Agents

TBA. It’s safe to say anyone who’s ever used the A2 console knows there needs
to be a better way...

1.3.2 FlexSock

For a module to talk via an agent-FD, it has to have some way of writing and
reading data with that FD. But is it a file handle, a FILE *, a Win32 named
pipe, or an OpenSSL connection, each of which have their own write method?
Hence - the FlexSock abstraction layer to isolate all the messy details. OpenSSL
has something similar in its BIO functionality - wouldn’t it be nice if everyone
had OpenSSL!
Details, as usual, in flux.

1.3.3 Remote IPC - DRAFT

Routing

Nobody has written a single line of rIPC code for this version yet, so this is just
ideas... forgive the lack of ASCIIs.
In any network, you have two types of element - the hub and the node. A
node cannot connect directly to another node, nor can it connect to more than
one hub. If it connected to multiple hubs, it would be represented as a node
connected to a hub connected to the other hubs.
In A2 rIPC, a node’s only function is computation, and a hub’s only function
is routing and communication. The only overlapping functionality is in the
common network protocols, the lower levels of which should be encapsulated
within FlexSock. Node→hub, hub→node and hub→hub protocols will not have
much in common.

CHAPTER 1. KERNEL DESIGN 12

All comms are in network byte order (big-endian).
When a new node connects to a hub, all other hubs need to know how to send
messages to it (the other nodes just depend on their hub for this). The new
node’s hub sends a ADDED message to all the hubs it is connected to.

struct msg_ADDED {
uint16_t node_address;
uint16_t hops;
uint16_t round_trip_time;

}

Node addresses are 16 bits for forced obsolescence. If the address space is ever
exhausted within a single rIPC network (!), it will be a lot less problematic to
extend at that stage than an exhausted 32 bit address space. As a hub will
never be an endpoint for a message, they are not rIPC-addressable.
When a hub recieves an ADDED message, it adds one to ’hops’, increases the
’rtt’ by the rtt of the sender, and files the new data and sender under the
node address. If the sender already advertised this node, the previous data is
replaced.
A hub MUST not accept a direct connection using a node address which the
hub already has a path for (especially a direct, hops=0 one, though the hub
SHOULD check if the original connection died). The only time this will happen
is when two nodes use the same address, which is an accident or an attack.
If the new data is ’better’ in terms of rtt than the last ’best’ for that address, the
new data is sent out to all hubs (except the sender). Hubs MAY delay (quench)
this retransmission if the data is changing quickly.
Hubs MAY ignore ADDEDs that exceed their limits on hops or rtt. If so, these
limits should be chosen carefully to avoid ”one-way streets”. Hubs MAY also
forget the ’worst’ records if they have too many, although they will never have
more than one per hub they are connected to, and MUST retain at least two
records. Hubs MAY allow a ’fuzz factor’ in order to recycle common data.
When a hub connects to an existing network, it MUST broadcast ADDEDs for
all the nodes already in its table. This is to allow existing networks to be joined.

struct msg_DROPPED {
uint16_t node_address;

}

When a node disconnects from its hub, the hub broadcasts a DROPPED mes-
sage. When a connection between hubs is lost, every path using the lost hub
must be removed. Any nodes which the hub no longer has a path for then gen-
erate a DROPPED message, which prompts other hubs to forget that path, and
rebroadcast the DROPPED message if they have no path to that hub. Quench-
ing MUST NOT occur here.
So, when a hub gets a DROPPED message, it removes the entry for the source
from the node’s paths, and if the hub has no more paths for that node, it tells all
the other hubs that it cannot find that node with more DROPPED messages.
If a node’s best path has been lost, but the hub has a path remaining, it MUST
send all hubs it knows (even the one which sent the DROPPED), an ADDED

CHAPTER 1. KERNEL DESIGN 13

message containing the new data. Otherwise the fastest, or even only, route
might be overlooked.

struct msg_DATA {
uint16_t dst_address;
uint16_t src_address;
uint16_t hops;
char data[];

}

When a hub recieves a data packet, it accepts a sacred responsibility to get that
packet to someone else. First, it finds the server with the lowest listed rtt for
dst address, and attempts to hand the message off. If that fails, the hub→hub
connection is considered dead, and DROPPEDs generated. And then the hub
tries the next fastest route.
If the hub ends up running out of routes, the DATA becomes a DATA REJECT,
src and dst addresses are switched, hops are set to zero, and the data is dropped.
If a DATA REJECT is rejected, then a warning should be generated and the
packet MUST be dropped.

Routing - Caveats

It is impossible for a rogue node to fiddle the routes, and a node attempting a
DoS by adding and removing itself can be catered for by quenching - introducing
a time lag into ADDED rebroadcasting.
However, a rogue hub could easily steal data and cause DoS. The only solutions
are configuring each hub to only accept certain other hubs, or to use authenti-
cation. Either solution relies on trust. Hub→hub connections should use SSL in
any case. Node→hub connections are likely to be within computers and secure
networks, so SSL is mostly overkill. (But flexibility never hurts).

