
Argante2
Assembly Tutorial

James Kehl
ecks@optusnet.com.au

May 26, 2002

Chapter 1

Assembly with NAGT

This is a little tutorial/HOWTO for writing Argante programs in NAGT assem-
bly. It is assumed you are already familiar with general programming, though
not completely familiar with Argante.
It’s not completely essential to understand these low-level workings; there are
higher level languages available which hide these details. But if you do put in
the brain sweat, you will be able to break the limits of these languages, and
even help develop them!

1.1 Assembler Basics

It’s assumed you have your copy of Argante2 built and ready to run, other
documents should be better able to explain how to do this - and we are assuming
some basic skills here. We will also work out of the Argante root directory.

1.1.1 Registers and Arithmetics

Our first program will add the numbers from 1 to 5.
begin ex reg1.agt

This program adds the numbers from 1 to 5.
This is a comment, by the way.
.code

mov u:r0, 0
add u:r0, 1
add u:r0, 2
add u:r0, 3
add u:r0, 4
add u:r0, 5
syscall2 $IO PUTINT, u:r0
syscall2 $IO PUTCHAR, 10
halt

end

1

CHAPTER 1. ASSEMBLY WITH NAGT 2

Save this code into a file called ex reg1.agt, using a text-only editor (very im-
portant!) and assemble it with ”compiler/nagt ex reg1.agt ex reg1.img”. This
tells NAGT to produce ex reg1.img from ex reg1.agt, and in future this will be
what we mean when we say ’assemble x.agt’.
Now run it - it should say 15.
So, what does each line do in the above code?

.code tells the assembler to expect code instruc-
tions.

mov u:r0, 0 sets the unsigned value of register 0 to 0.
add u:r0, x adds x to the unsigned value of register 0.
syscall2 $IO PUTINT, r0 prints the contents of register 0, assuming

it to be an integer.
syscall2 $IO PUTCHAR, 10 prints a newline (ASCII 10) character.
halt terminates the program.

In an ordinary programming language, you construct variables, which have spe-
cific types.
In Argante2, there are 31 registers (32, but r31 is special) - basically variables
- which can be accessed as any type. 31 might not seem all that many, but
you will never end up using more than about 10 in even the most complicated
programs, and there are ways to create more variables, which we will go into
later.
So why aren’t there specific types to registers? As they are shared between all
functions in your program, it would otherwise be impossible to use 32 ints in
one place and 32 floats in another. Another good reason is that it dramatically
simplifies the syscall calling convention - more on that later.
As an aside, an unsigned value is one which can take integral (whole number)
values from 0 to 4294967295 (no negatives!), a signed value can range from
−2147483647 to +2147483647 (integral), and a floating point value can take
positive or negative, fractional values from, at worst, 1 ∗ 10−37 to 1 ∗ 1037. A
float is not as fast as a integer type, and may only provide 6 digits of accuracy.
Exercise. Write a program to find 3 factorial and 5 factorial.

CHAPTER 1. ASSEMBLY WITH NAGT 3

Figure 1.1: Summary of arithmetic commands.

The following operations work with all register types: u: (unsigned),
s: (signed) and f: (floating point), and any mixture.
mov x, y Sets x to y
add x, y Adds y to x
sub x, y Subtracts y from x
mul x, y Multiplies x by y
div x, y Divides x by y
mod x, y Sets x to the remainder of x/y
The following binary operations require two unsigned arguments
and x, y Sets x to the binary intersect of x and y
or x, y Sets x to the binary union of x and y
xor x, y Sets x to the exclusive-or of x and y
not x Sets x to its binary inverse.
shl x, y Multiplies x by 2y, discarding bits above

232.
shr x, y Divides x by 2y, discarding bits below 1.
rol x, y Multiplies x by 2y, moving bits above 232

to the lower end.
ror x, y Divides x by 2y, moving bits below 1 to

the upper end.
The following commands are useful for debugging.
syscall2 $IO PUTINT, x prints x as a signed int.
syscall2 $IO PUTCHAR, 10 prints a newline character.

1.1.2 Labels and Control Flow

In the previous section, you can see we used the same code, repeated five times,
with different arguments. When you are dealing with complicated operations
(generally anything above five instructions) you don’t want to do this: it’s too
much work, it’s easy to make mistakes, and one change has to be repeated
throughout the code.
Hence, we use subroutines.
The following program uses ’call’ and ’ret’ to print the first ten terms of the
Fibonacci Sequence:
begin ex lab1.agt

This program prints ten terms of the Fibonacci Sequence.
.code

mov u:r0, 0
mov u:r1, 1
syscall2 $IO PUTINT, r1
call :fibo func
call :fibo func
call :fibo func
call :fibo func
call :fibo func

CHAPTER 1. ASSEMBLY WITH NAGT 4

call :fibo func
call :fibo func
call :fibo func
call :fibo func
syscall2 $IO PUTCHAR, 10
halt
fibo func:
mov u:r2, u:r0
add u:r2, u:r1
mov u:r0, u:r1
mov u:r1, u:r2
syscall2 $IO PUTCHAR, 20 # ASCII 20 - a space character.
syscall2 $IO PUTINT, u:r1
ret 1

end

Type in this program, assemble and run it. What order are the instructions
executed in?

Exercise. Write a program to find and print the second, fourth, eighth and
sixteenth powers of 1, 2, 3 and 4.
At this point we will mention the ’jmp’ instruction. It resembles the ’call’
instruction in syntax and function, but there is no ’ret’ equivalent. The next
’ret’ instruction will still return to the last unreturned ’call’, which can be useful
if the last instruction in a function would have been a call to another function:

begin ex lab2.agt

This program demonstrates tricky (ab)use of the jmp instruction.
.code

mov u:r0, 0
mov u:r1, 1
mov u:r2, 1
call :func
halt

:func
call :subfunc
call :subfunc
call :subfunc
call :subfunc
jmp :subfunc

:subfunc
mov u:r3, u:r1
mul u:r3, u:r3
add u:r0, u:r3
add u:r1, u:r2
syscall2 $IO PUTINT, u:r0
syscall2 $IO PUTCHAR, 10
ret 1

CHAPTER 1. ASSEMBLY WITH NAGT 5

end

This example is a little contrived. What do you think would happen without
the ’jmp’ - try it!

Exercise. Modify the program above to add the squares of the first five even
numbers.

Figure 1.2: Summary of flow control commands.

:label Defines a label
jmp :label Makes :label the next instruction to exe-

cute.
call :label Executes the instructions following :label,

but resume here on a ’ret’.
ret 1 Resumes execution following the last ac-

tive ’call’
ret x Resumes execution following the xth last

active ’call’. ’calls’ which occurred after
that will be forgotten.

CHAPTER 1. ASSEMBLY WITH NAGT 6

1.1.3 Conditionals and Loops

So far you haven’t done anything a pocket calculator wouldn’t be able to do
faster. We’ll make up for that by introducing the conditional commands.
begin ex cond1.agt

This program prints the sum of the numbers between 1 and 100.
.code

mov u:r0, 0
mov u:r1, 1

:loop top
add u:r0, u:r1
add u:r1, 1
ifbel u:r1, 100
jmp :loop top
syscall2 $IO PUTINT, u:r0
syscall2 $IO PUTCHAR, 10
halt

end

That made life easy! Only when a conditional comparison is TRUE does the
next statement get executed. Note that execution normally continues on to the
statement after that, so unless the first statement is JMP, the second statement
is always executed.

Exercise. What happens when you put one conditional right after another?
Can you see a use for this?
As loops like this are fairly common, there is a special ’loop’ instruction, which
decrements a counter and jumps to an address if the counter is above zero.
begin ex cond2.agt

This program prints the numbers between 1 and 100 ending in 4 or 6.
.code

mov u:r0, 1
mov s:r1, 100 # Signed values for decreasing loops are preferable.

:loop top
add u:r0, 1
mov u:r2, u:r0
mod u:r2, 10 # What’s the last digit?
ifneq u:r2, 4
ifeq u:r2, 6
call :print num
loop s:r1, :loop top
halt

:print num
syscall2 $IO PUTINT, u:r0
syscall2 $IO PUTCHAR, 10
ret 1

CHAPTER 1. ASSEMBLY WITH NAGT 7

end

Exercise. Modify the above program to print an exclamation mark (ASCII
33) if the number is also divisible by 7.

Figure 1.3: Summary of conditionals.

ifabo x, y If x <= y, skip next command.
ifbel x, y If x >= y, skip next command.
ifneq x, y If x = y, skip next command.
ifeq x, y MIf x 6= y, skip next command.
loop x, :addr Decrease x, and goto :label if above zero.

CHAPTER 1. ASSEMBLY WITH NAGT 8

1.2 Advanced Assembler

Hey, well done! Now you can do all the maths as you could ever want. Ok,
maybe not, but somebody is probably writing a complex/trig/log/linalg module
somewhere. Give us enough time and someone will write a Differential Equation
engine...
Not that you wanted to do maths anyway, right?

1.2.1 Data and References

In the previous section, we mentioned that there were other ways of storing data
other than registers. All of them revolve around memory, so it’s time to learn
to use it.
Here’s one of our old programs - recognize it?
begin ex dat1.agt

This program prints ten terms of the Fibonacci Sequence.
.data
:terma

0
:termb

1
:tempterm

0
:count

10
.code
:loop top

syscall2 $IO PUTINT, *s::termb
call :fibo func
loop *s::count, :loop top
syscall2 $IO PUTCHAR, 10
halt
fibo func:
mov *u::tempterm, *u::terma
add *u::tempterm, *u::termb
mov *u::terma, *u::termb
mov *u::termb, *u::tempterm
syscall2 $IO PUTCHAR, 20
ret 1

end

The first thing you should notice is that the first thing in the file is not ’.code’
- it’s ’.data’. This must mean that all those labels are data labels.
And, scattered through the code where the registers used to be, are their refer-
ences - looking sort of like code labels, only with a ’*’ in front of them, and a
’u:’ part we recognize as specifying the data type.
When we used the ’:label’ syntax for code, the assembler replaced the reference
with the address of the code. Now for data, we don’t really want to know the

CHAPTER 1. ASSEMBLY WITH NAGT 9

address of the variable - we want to change the contents. So, we must indicate
that we want the contents of the address. That’s the ’*’.
You might think that using data labels instead of registers makes code a lot
more readable, and you’d be right. But registers are accessed with less com-
plexity than other memory, which makes them a lot faster.
You can also apply the dereference to registers:
begin ex dat2.agt

This program prints an array.
.data
:numbers

-1000
2000
-4000
8000
-16000

.code
mov u:r0, :numbers
% means "size (in integers) of this label’s content"
mov u:r1, %numbers :loop top
syscall2 $IO PUTINT, *s:r0
syscall2 $IO PUTCHAR, 10
add u:r0, 1
loop u:r1, :loop top
halt

end

Note r0 is not used as more than one type. The dereference line means ”get
the signed contents of the memory at address r0”, not ”get the contents of the
memory at signed address r0”. There’s no such thing as a signed address.
Exercise. What happens if you change %numbers in the above code to, say,
400? Why?

1.2.2 Strings and Buffers

So far all we’ve done is print numbers, numbers, numbers. Maybe last section
we used an array - very important stuff, but still dull. Nobody wants code that
runs like a collection of Windows error messages (”MMSYSTEM 451: Contact
vendor for details”).
So, onward! Text!

begin ex str1.agt

Ultracool stuff.
.rodata
:message to world

"You smell DISGUSTING!!\n"
.code

mov u:r0, :message to world

CHAPTER 1. ASSEMBLY WITH NAGT 10

^ means "size (in bytes) of this label’s content"
mov u:r1, ^message to world
syscall $IO PUTSTRING
halt

end

Well, it’s original.
Note we have to feed IO PUTSTRING two arguments via registers - the address
and the size (in bytes), and that it isn’t called by ’syscall2’ - it’s called by
’syscall’. (’syscall2’ is called what it is because it has two arguments.)
The second thing to notice is that we didn’t use ’.data’ - we used ’.rodata’.
Because this string is not supposed to be modified, we can tell Argante so, and
impede any evil hackers changing our manifesto.

Exercise. Write a program that prints an array of strings.

begin ex str2.agt

Ultracooler stuff.
.ropack
:question of user

" What’s your name?\n"
:message to user

" You smell disgusting, "
.data
:buffer

0x0 repeat 8
.code

mov u:r1, :question of user
mov u:r2, ^question of user
syscall $CFD WRITE
mov u:r1, :buffer
mov u:r2, ^buffer
syscall $CFD READ
mov u:r3, ^buffer
sub u:r3, u:r2
mov u:r1, :message to user
mov u:r2, ^message to user
syscall $CFD WRITE
mov u:r1, :buffer
mov u:r2, u:r3
syscall $CFD WRITE
mov u:r1, 10
syscall $CFD WRITE CHAR
halt

end

This program makes use of input, which is a relatively unpolished feature as of

CHAPTER 1. ASSEMBLY WITH NAGT 11

the time of writing. (Windows is currently OK, unices depend on the configure
options. No Multithreading = Console Input works.) So it might fail with a
ERR BAD FD code.

Exercise. Get out your Syscall Reference and figure out how this thing works,
when it works.
As we have more than one string, and they are readonly, it’s foolish to keep
them in separate sections in the file. So we specify ’.ropack’, which makes the
assembler pack them into the same section.

Figure 1.4: Summary of data manipulators.

* References the contents of an address.
: The address of a label
% The size of a label’s content in dwords

(four-byte blocks)
^ The size of a label’s content in bytes.
.data Creates data segments.
.rodata Creates readonly data segments.
.ropack Place multiple items in one readonly data

segment.
.packed If you use this without knowing what you

are doing, a black hole will swallow the
earth.

repeat n Repeat all data on this line n times.

CHAPTER 1. ASSEMBLY WITH NAGT 12

1.2.3 Dynamic Allocation

Now you are able to read input from a console, or, with a bit of side reading,
from a file, you’re going to be able to make things happen. But what if you
don’t know much memory your buffer is going to need? You could just put a
really big number after repeat, but this will bloat your .img file. What you need
is to be able to create data sections at runtime!
The trouble is that the assembler has no way of knowing where this segment
is going to end up. So you have to keep this address in a register, or, if you
store it in a data segment, you have to do two separate dereferences to get at
the contents.
begin ex alc1.agt

What DOES this program DO?
.data
:numbers

-1000
2000
-4000
8000
-16000

.code
We’ll store the address in r16.
mov u:r16, %numbers
alloc u:r16, 3 # 3 = 1 + 2 = READABLE + WRITABLE
mov u:r1, u:r16
mov u:r0, :numbers
mov u:r2, %numbers :loop top
mov *u:r1, *u:r0
add u:r0, 1
add u:r1, 1
loop u:r2, :loop top
free u:r16
halt

end

Exercise. Create a small, useful example of alloc, and send it to the author.

CHAPTER 1. ASSEMBLY WITH NAGT 13

Figure 1.5: Summary of data allocation commands.

alloc x, y Allocates a block of size x and permissions
y, and stores its address in x.

realloc x, u:y Resizes block x to size y and stores its
new address in x.

realloc x, s:y Changes the permissions of block x to y.
free x Deallocates a block.

1.2.4 The Metastack

Let’s say you have a subroutine which uses some temporary variables - in reg-
isters, or data areas, it doesn’t matter. And this subroutine has to call itself,
multiple times, without messing up its temporaries. Tricky? You should already
know one solution using an array. . .
Save the temporaries in the array before you call, and increment the address
into it. Then the next call will save its own temporaries in a different part of
the array. And when it returns, you decrement the address and restore your
temporaries.
It’s a lot of work.
Hence Argante provides built-in support for this with the metastack functions.
Once you have set up the metastack, you just ’push’ (add) and ’pop’ (retrieve
and remove from stack) things you want to save or retrieve,
begin ex stk1.agt

Yes, they are getting boring for me, too.
.data
:stack

0x0 repeat 40
.code

stack :stack, %stack
mov u:r0, 1
call :funny func
syscall $IO PUTINT
halt

:funny func
add u:r0, 1
ifabo u:r0, 5
ret 1
push u:r0
call :funny func
pop u:r0
ret 1

end

If everything works, the program will print 2.

CHAPTER 1. ASSEMBLY WITH NAGT 14

Figure 1.6: Summary of metastack.

stack x, u:y Set the metastack address to x and size to
y. Does not zero the metastack pointer -
but this may change.

push x Add x on the stack and increment the
metastack pointer.

pop x Decrement the metastack pointer, and re-
trieve a value into x.

1.2.5 Some Things We Skipped

There is another sort of assembler directive we haven’t mentioned. These are
placed before any ’.data’ or ’.code’ directives and set various elements of the
image header. And most of these elements are obsolete.
There is one command which still may have a future: ’ !signature’. Currently it
allows you to embed a short (32char) description of your program, which should
probably include its author.
If you have a register dedicated to a specific function all the way through your
code, you don’t actually have to write the number all the way through your
code. Use ’.define’ macros, and your code will be easier to read, and you will
make less mistakes.
It’s also a good idea to use ’.define’ macros for numeric options and nearly
anything that’s shared between different bits of your program.
begin ex msc1.agt

UselessProgram version 2.
!signature "UselessProgram <noflames@please>"
We’ll still store the address in r16, but it’s easy to change.
.define addy% u:r16
.data
:numbers

-1000
2000
-4000
8000
-16000

.code
mov addy%, %numbers
alloc addy%, 3 # 3 = 1 + 2 = READABLE + WRITABLE
mov u:r1, addy%
mov u:r0, :numbers
mov u:r2, %numbers :loop top
mov *u:r1, *u:r0
add u:r0, 1
add u:r1, 1
loop u:r2, :loop top
free addy%

CHAPTER 1. ASSEMBLY WITH NAGT 15

halt

end

Exercise. Why use a funny symbol on the end of addy? What happens if you
change ’addy%’ to ’rs’? Why?

1.3 Argante Concepts

This ends the NAGT-specific part of this guide. From here on, this applies to
everything in Argante, on every level - even HLLs.

1.3.1 Exceptions

When a ’fatal’ error happens in Argante, we use a concept usually found in
object oriented languages: that of raising (or throwing) an exception. If there
is no active exception handler in a subroutine in which an exception is raised,
the subroutine is aborted and the exception propagates up to the parent routine.
(If there is no parent routine, the program dies.)
Examples speak louder than words, anyway:
begin ex exc1.agt

Exception demonstrator.
.ropack
:ex1

"Exception handler 1 activated.\n"
:ex2

"Exception handler 2 activated.\n"
.code

handler :hand2
call :subrtn1

The code should never get here, so let’s crash if it does.
Handler 0 deactivates the exception handler.

handler 0
mov *u::ex1, 0 # write to readonly data

:subrtn1
This handler is for the current function only.

handler :hand1
To throw an exception yourself, use ’raise’.

raise 0xfeedface
ret 400 # This should die, too, despite a handler...

:hand1
mov u:r0, :ex1
mov u:r1, ^ex1
syscall $IO PUTSTRING

The exception handler has been activated,
and so won’t trigger again (that would loop forever!)

raise 0xf007f00d

CHAPTER 1. ASSEMBLY WITH NAGT 16

ret 400
:hand2
The exception number (0xf007f00d) will be placed in r31.

syscall2 $IO PUTHEX, u:r31
syscall2 $IO PUTCHAR, 10
mov u:r0, :ex2
mov u:r1, ^ex2
syscall $IO PUTSTRING
halt

end

Exception numbers for system-defined errors are listed in include/exception.h,
and their symbolic names ($ERR xxxx) can be used in assembler code.

Figure 1.7: Summary of exception commands.

handler 0 Any exceptions in this routine will be
passed upward. (No handler.)

handler :label Any exceptions in this routine will set r31
to the exception number, and jump to :la-
bel.

raise x Raises exception x.

CHAPTER 1. ASSEMBLY WITH NAGT 17

1.3.2 Syscalls

Each syscall is part of an Argante kernel module (i.e. privileged code) which
are written to allow interactions with the real system or to do things difficult to
achieve from Argante code. (For example, the StrFD module could be written
in Argante, but it would be slower and would require an OO language to be as
useful.)
In general, all syscalls (used with the ’syscall’ op) will take their first argument
in r0, their second argument in r1, their third argument in r2, and so on.
For a call marked by ”SYS2”, you can use the second argument of syscall2
instead of r0.
Return values are not so consistent. When you see ’ignore’ in a list of outputs
from a syscall, it means that register is returned unchanged.
Take CFD READ for example:
it returns
[ignore, unsigned @null after data, unsigned space left in buffer]
which means r0 is unchanged.
All the syscalls can be found in the Argante2 Syscall Reference - likely to be
found wherever you found this document.

1.4 Conclusion

Hey, you now know every opcode in Argante2 assembler. Go forth, and code!

